

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journal homepage: www.elsevier.com/locate/jhazmat

A new approach to predict the condensed phase heat of formation in acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds

Mohammad Hossein Keshavarz^{a,*}, Hossein Sadeghi^b

^a Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Isfahan 83145-115, Islamic Republic of Iran ^b Department of Physics, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115, Islamic Republic of Iran

ARTICLE INFO

Article history: Received 2 February 2009 Received in revised form 23 May 2009 Accepted 25 May 2009 Available online 6 June 2009

Keywords: Condensed phase heat of formation Acyclic and cyclic nitramine Nitrate ester Nitroaliphatic

1. Introduction

The importance of a reliable prediction method is to get benefit from most of the limited resources and minimize the amount of waste resulting from experimental measurements. Various empirical methods complemented the computer outputs for desk calculations have been developed to help the formulation of advanced propellants and explosives [1,2]. The development of theoretical reliable models allows the suitable screening of hypothetical energetic materials. However, the experimental researchers can expend resources only on those molecules that show promise to provide enhanced performance, reduced sensitivity, or reduced environmental hazards.

In order to assess potential performance of an energetic compound in explosive or propellant cases, the condensed phase heat of formation $(\Delta H_{\rm f}^{\circ}(\mathbf{c}))$ is considered as an important property. It enters into the calculation of explosive and propellant properties such as detonation pressure, detonation velocity and specific impulse to investigate characteristics of energetic materials. Significant resources could be expended in synthesizing a notional energetic compound only to discover upon measuring its $\Delta H_{\rm f}^{\circ}(\mathbf{c})$. Suitable predictive methods for $\Delta H_{\rm f}^{\circ}(\mathbf{c})$ can eliminate poor candidates from further consideration. The desired quantity is usually $\Delta H_{\rm f}^{\circ}(\mathbf{c})$ because the standard state of the energetic material of

ABSTRACT

This paper presents a new approach to predict the condensed phase heat of formation in important classes of energetic compounds including acyclic and cyclic nitramines, nitrate esters and nitroaliphatics. The condensed phase heat of formation has been expressed by a combination of a core heat of formation, which is a function of elemental composition of the energetic compound, and correction functions. The correction functions for some energetic compounds can have decreasing or increasing effects on the basis of thermodynamic stability. It has been shown that this model can offer reliable predictions for the above energetic compounds compared to the calculated outputs of the best recent empirical and complex quantum mechanical methods.

© 2009 Elsevier B.V. All rights reserved.

interest corresponds to the condensed phase. To assess the potential performance of the energetic material of interest, however, $\Delta H_{\rm f}^{\circ}({\rm c})$ should be used in the corresponding computer codes such as CHEETAH [3] and NASA-CEC-71 [4]. Various empirical and theoretical methods can be used to predict heat of formation of different classes of energetic compounds which have been reviewed by some authors [5,6]. In this paper, we will introduce a reliable simple correlation for predicting condensed phase heat of formation for acvclic and cvclic nitramines, nitrate esters and nitroaliphatics considered as some important classes of energetic compounds. The results of this method will be compared with outputs of complex quantum mechanical method [7,8]. The presence of some specific polar groups or molecular fragments in the compounds of interest can increase the thermodynamic stability of energetic compounds which are considered in the correction heat of formation. Additionally, predicted $\Delta H_{\epsilon}^{\circ}(c)$ of the new method will be tested against experiment and compared with the calculated results of previously reported work [9] concerning well-known explosives that have complex and different molecular structures.

2. Theory

Different quantum mechanical methods can be used to predict gas phase heats of formation of energetic compounds [1]. However, there are also some semi-empirical molecular orbital methods like MNDO, MNDO/3, AM1, PM3 and molecular mechanics MM2 which can be utilized to estimate the gas phase heats of formation for various energetic compounds. To calculate the solid and liquid phase heats of formation using predicted heats of vaporization and

^{*} Corresponding author. Tel.: +98 312 522 5071; fax: +98 312 5225068. *E-mail addresses*: mhkeshavarz@mut-es.ac.ir, mhkir@yahoo.com (M.H. Keshavarz).

^{0304-3894/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jhazmat.2009.05.118

Table 1

Comparison of the predicted heats of formation (kJ/mol) from the present new method, quantum mechanical [7,8] and previous [7] methods with experimental data.

Compound	Experiment	New method	Dev	Quantum mechanical method	Dev	Previous work	Dev
CH ₃ NO ₂	-112.5 [23]	-109.9	-2.6	-114.6	2.1	-102.9	-9.6
$CH_2(NO_2)_2$	-104.9 [23]	-107.4	2.5	-96.2	-8.7	-108.4	3.5
$CH(NO_2)_3$	-68.0 [23]	-104.9	36.9	-45.2	-22.8	-113.8	45.8
$C(NO_2)_4$	38.5 [23]	47.0	-8.5	38.1	0.4	46.4	-7.9
CH ₃ CH ₂ NO ₂	-143.9 [23]	-146.6	2.7	-155.2	11.3	-137.2	-6.7
$C(NO_2)_3C(NO_2)_3$	108.4 [23]	81.5	26.9	101.7	6.7	92.5	15.9
CH ₃ CH ₂ CH ₂ NO ₂	-167.4 [23]	-183.3	15.9	-180.3	13.0	-171.1	3.7
CH ₃ CH(NO ₂)CH ₃	-180.3 [23]	-183.3	3.0	-189.1	8.8	-171.1	-9.2
CH ₃ CH ₂ CH ₂ CH ₂ NO ₂	-192.6 [23]	-220.0	27.4	-202.9	10.3	-205.0	12.4
$CH_3CH(NO_2)CH_2CH_3$	-207.6 [23]	-220.0	12.4	-210.9	3.3	-205.0	-2.6
$(CH_3)_3C(NO_2)$	-229.7 [23]	-220.0	-9.7	-225.1	-4.6	-205.0	-24.7
CH ₃ CH ₂ ONO ₂	-190.4 [23]	-212.7	22.3	-203.3	12.9	-197.5	7.1
$CH_2(ONO_2)CH(ONO_2)CH_2ONO_2$	-369.9 [23]	-376.4	6.6	-370.7	0.8	-363.6	-6.3
CH ₃ CH ₂ CH ₂ ONO ₂	-214.6 [23]	-249.4	34.7	-227.2	12.6	-231.8	17.2
$C(CH_2ONO_2)_4$	-538.5 [23]	-513.3	-25.2	-566.1	27.6	-497.5	-41.0
NH ₂							
	00000000	107.0	24.2	21.0		70.0	
N-NO ₂	-86.6 [23]	-107.8	21.2	-31.0	-55.6	-79.9	-6.7
O ₂ N NO ₂ NO ₂ NO ₂	75.3 [23]	98.8	-23.5	87.0	-11.7	135.6	-60.3
0 ₂ N-N-NO ₂ 0 ₂ N-N-NO ₂	79.1 [23]	74.1	5.0	107.1	-28.0	101.7	-22.6
	41.0 [8]	39.5	1.5	-7.1	48.1	4.6	36.4
$\begin{array}{c} H_2 N \\ H_2 N \\ H_2 N \end{array} \xrightarrow{NO_2} NO_2 \end{array}$	-133.9 [8]	-168.2	34.3	-82.0	-51.9	-192.7	58.8
$\begin{array}{c} O_2 N & NO_2 \\ O_2 N & NO_2 \\ O_2 N & O_2 N \\ O_2 N & O_2 N \\ O_2 N & O_2 N \\ \end{array}$	381.2 [8]	374.6	6.6	575.7	-194.6	-60.3	441.5
O ₂ N NO ₂ O ₂ N NO ₂ N NO ₂ N NO ₂	377.4 [8]	375.5	1.8	415.1	-37.7	394.2	-16.8
	-129.4 [8]	-135.1	5.7	-66.5	-62.9	-38.3	-91.2
rms deviation			18.8		48.7		97.4

sublimation, Hess's law can be used. Yoshiaki et al. [10] have combined the heats of vaporization and sublimation using additivity rule with gas phase heats of formation data for PM3 and MM2 methods to calculate the condensed phase heats of formation. Politzer et al. [11] and Murray and Politzer [12,13] have shown that correlations could be established between statistically based quantities of electrostatic potentials mapped onto isodensity surfaces of isolated molecules and their heats of sublimation and vaporization. Rice et al. [7] and Rice and Hare [8] have performed a generalized gradient approximation of density functional theory characterization of all molecules using the 6-31G* basis set [14] and the hybrid B3LYP [15,16] density functional for converting quantum mechanical energies of molecules into gas phase heats of formation. They also used surface electrostatic potentials of individual molecules for computation of heats of sublimation and vaporization as recommended by Politzer [11] and Murray and Politzer [12,13].

Table 2

Comparison of predicted heats of formation (kJ/mol) of the present and previous [9] methods with experimental data [23] for acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds that have different molecular structures.

Energetic compound	Experiment	New method	Dev	Previous work	Dev
CH ₃ CH ₂ CH(NO ₂) ₂	-163.2	-180.8	17.6	-176.6	13.4
O2NCH2CH2NO2	-178.7	-144.1	-34.6	-142.7	-36.0
$O_2 N C H_2 C H_2 C H_2 N O_2$	-207.1	-180.8	-26.3	-176.6	-30.5
$HOCH_C(NO_2)(CH_OH)CH_OH$	742.2	744.5	20.5	7/3 0	17
	410.2	204.9	15.4	284.0	25.2
$C(NO_{2}) = CH_{2}OH_{$	-410.2	262.0	-13.4	207.0	-23.3
	-201.1	-262.0	0.9	-527.2	00.1
$CH_3CH_2C(CH_2OH)_2NO_2$	-601.2	-606.3	5.1	-598.3	-2.9
$(HOCH_2)_2C(NO_2)(CH_3)$	-570.5	-569.7	-0.9	-564.4	-6.1
$C(NO_2)_3 CH_2 OCH_2 OCH_2 C(NO_2)_3$	-402.1	-430.5	28.5	-447.3	45.2
$C(NO_2)_3CH_2CH_2C(=0)OCH_2C(NO_2)_3$	-496.2	-467.6	-28.6	-463.2	-33.0
O ₂ NCH ₂ CH ₂ OH	-350.6	-321.5	-29.2	-316.7	-33.9
$(CH_3)_2 C(NO_2)_2$	-192.5	-180.8	-11.7	-176.6	-15.9
O ₂ NCH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-215.5	-256.7	41.2	-239.3	23.8
CH ₂ C(NO ₂) ₃	-18.4	-58.6	40.1	-97.1	78.7
02N	-254.3	-212.7	-41.6	-218.4	-35.9
$\begin{array}{c} H_3 C & NO_2 & CH_3 \\ O_2 N' & & & NO_2 \\ O_2 N & & NO_2 \\ O_2 N' & & O_2 \\ O_2 N' & CH_3 \end{array}$	118.0	88.9	29.1	111.7	6.3
	-53.1	-24.0	-29.2	-0.4	-52.8
O ₂ N-N	-92.9	-57.4	-35.5	-102.1	9.2
	_105.9	-96.5	_94	_131.8	25.9
(CH_{-}) -NNO-	71 1	23.1	48.0	64.0	23.3
	17	16.1	14.4	25.1	26.9
0 ₂ N	1.7	10.1	- 14.4	-33.1	50.8
	10.5	2.8	7.6	-29.3	39.8
H ₃ C					
0 ₂ N ^{-N} -V-NO ₂	16.2	37.0	-20.8	10.0	6.1
O ₂ N					
CH ₃ CH ₂ CH ₂ CH ₂ N(NO ₂)CH ₂ CH ₂ ONO ₂	-192.5	-233.4	40.9	-265.7	73.2
CH ₃ CH ₂ N(NO ₂)CH ₂ CH ₂ ONO ₂	-164.0	-160.0	-4.0	-197.9	33.9
$O_2 NOCH_2 CH_2 N(NO_2) CH_2 CH_2 ONO_2$	-257.4	-223.5	-33.9	-263.6	6.2
CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ N(NO ₂)CH ₂ CH ₂ ONO ₂	-206.7	-270.1	63.3	-300.0	93.3
$CH_2 CH_2 CH_2 N(NO_2) CH_2 CH_2 ONO_2$	-174 1	-196.7	22.6	-231.8	57.8
ONO2 ONO2 CH.ONO.	., .,	190.7	22.0	251.0	57.0
	-826.3	-784.4	-41.9	-761.5	-64.8
	-444.3	-464.5	20.2	-494.5	50.2
	477.0	400.0	40 C	477.0	0.0
	-4/7.0	-433.3	-43.0	-4/7.0	0.0
	-577.0	-399.0	22.1	-590.8	13.8
$O_2 NOCH_2 CH(ONO_2) CH_2 CH_2 ONO_2$	-414.2	-413.1	-1.1	-397.5	-16.7
$O_2 NOCH_2 CH_2 ONO_2$	-232.6	-2/6.2	43.6	-263.6	31.0
$O_2 NOCH_2 CH(ONO_2) CH_3$	-297.1	-312.9	15.8	-297.5	0.5
$(O_2 NOCH_2)_3 CCH_3$	-450.2	-449.8	-0.4	-431.4	-18.8
O ₂ NOCH ₂ CH ₂ CH ₂ CH ₂ ONO ₂	-274.1	-349.6	75.5	-331.4	57.3
$(O_2 NOCH_2)_3 CCH_2 CH_3$	-479.9	-486.5	6.6	-465.7	-14.2
$CH_3CH(ONO_2)CH_2CH(ONO_2)CH_3$	-385.8	-386.3	0.5	-365.7	-20.1
$(O_2 \text{NOCH}_2)_2 C(\text{NO}_2) CH_2 CH_3$	-367.4	-383.7	16.4	-371.1	3.7

Table 2 (Continued)

Energetic compound	Experiment	New method	Dev	Previous work	Dev
ONO2					
ONO2 ONO2	-387.9	-398.4	10.6	-404.2	16.3
$CH_3C(=0)ONO_2$	-331.0	-333.5	2.5	-270.3	-60.7
$(O_2 NOCH_2)_3 CCH_2 OCH_2 C(CH_2 ONO_2)_3$	-979.5	-944.2	-35.2	-889.9	-89.6
O2NOCH2CH2OCH2CH2OCH2CH2ONO2	-656.9	-663.8	6.9	-581.2	-75.7
O2NOCH2CH2OCH2CH2ONO2	-451.0	-470.0	19.0	-422.2	-28.8
HOCH ₂ CH(ONO ₂)CH ₂ OH	-567.8	-599.0	31.3	-590.8	23.0
HOCH ₂ CH(ONO ₂)CH ₂ ONO ₂	-472.4	-433.3	-39.0	-477.0	4.6
O ₂ NOCH ₂ CH(ONO ₂)CH(ONO ₂)CH(ONO ₂)CH(ONO ₂)CH ₂ ONO ₂	-708.8	-677.1	-31.7	-663.2	-45.6
CH ₃ CH(ONO2)CH ₃ ONO ₂ ONO ₂	-229.7	-249.4	19.7	-231.8	2.1
	-386.0	-394.2	8.2	-358.6	-27.4
O_2N OCH_2CH_2ONO2	-298.8	-245.1	-53.7	-248.5	-50.3
O ₂ NNHCH ₂ CH ₂ NHNO ₂	-374.0	-347.0	-27.0	-336.8	-37.2
$HO_{-H} HO_{-H} HO_{$	-287.7	-296.9	9.2	-342.7	55.0
	-302.5	-304.3	1.8	-367.4	64.9
rms deviation			29.1		41.0

Group additivity methods such as procedures employed by Benson, Yoneda and Joback can be used to estimate the ideal gas phase heats of formation [17]. The heats of formation of condensed phase for some specific classes of explosives can also be calculated by using group additivity methods. For example, Bourasseau [18] has applied group additivity method to predict the standard heats of formation at 298 K for aliphatic and alicyclic polynitro compounds.

Heats of detonation on the basis of Kamlet's method can also be used for predicting solid phase heats of formation of some explosives in the range $Q_{corr} > 4602$ kJ/g [19], where Q_{corr} is the corrected heats of detonation on the basis of Kamlet's method [20], through approximate detonation temperature, T_{ad} . The condensed phase heat of formation of important classes of energetic compounds can also be calculated through simple path [9,21]. For energetic compounds which contain at least one of the functional groups including N–NO₂, C–ONO₂ or nonaromatic C–NO₂, the predicted condensed phase heats of formation by this method have a higher root mean square (rms) of deviation from experiment [9]. It will be shown in the next section that a new different approach can be introduced in which the reliability of the predicted values can be improved with respect to previous work [9] and those obtained from quantum mechanical results [7,8].

3. Results and discussion

In order to predict reliable condensed phase heats of formation of energetic compounds, it was found that the elemental composition of acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds may be taken as the core correlation (ΔH_{core}). Two specific structural parameters can decrease or increase the predicted values by core correlation in order to obtain satisfactory results. Some functional groups such as hydroxyl and carboxyl significantly decrease the heat content of energetic compounds. Meanwhile the presence of one N–NO₂ in molecular structure may increase the predicted values of core correlation under certain conditions. Thus, the suitable relationship of elemental composition as well as positive and negative contributions of some specific functional groups or structural parameters for acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds with general formula $C_{b_1}H_{b_2}N_{b_3}O_{b_4}$ can be given as:

$$\Delta H_{\rm f}({\rm c}) = \Delta H_{\rm core} + \Delta H_{\rm corr} \tag{1a}$$

$$\Delta H_{\rm core} = \sum_{j=1}^{4} y_j b_j \tag{1b}$$

$$\Delta H_{\rm corr} = y_5 \sum_i n_{i,\rm DE} + y_6 \sum_i n_{i,\rm IE}$$
(1c)

where $\Delta H_{\rm f}(c)$ is the condensed heat of formation; $\Delta H_{\rm core}$ is the correcting heat of formation for some energetic compounds that have decreasing or increasing effects (i.e. DE or IE) on the predicted values by the value of ΔH_{core} ; n_{DE} and n_{IE} are the number of some specific functional groups or structural parameters corresponding to DE or IE, respectively; $y_1 - y_6$ are adjustable parameters which can be found from the experimental data given in Tables 1 and 2. Multiple linear regression method [22] was used to find adjustable parameters. The left-division method for solving linear equations uses the least squares method because the equation set is overdetermined [22]. The optimized adjustable parameters shown in Eq. (1) for condensed heat of formation in terms of kJ/mol can be given as $y_1 = 9.344$, $y_2 = -9.055$, $y_3 = 23.12$, $y_4 = -15.79$, $y_5 = 51.49$ and $y_6 = -52.00$. *R*-squared values or the coefficients of determination of Eq. (1) is 0.97 [22]. The values of DE and IE can be described the follows:

Table 3

Comparison of theoretically predicted heats of formation (kJ/mol) of the present and previous [9] methods with experimental data for some well-known energetic compounds.

Energetic compound	Experiment	New method	Dev	Previous work	Dev
$\overset{H_2}{\overset{NO_2}{\overset{NO_2}{\overset{NO_2}{\overset{NO_2}{}}}}}_{\overset{NO_2}{\overset{NO_2}{}}}$	-321.7 [24]	-334.2	12.4	-406.9	85.2
CH ₂ ONO ₂ CH ₂ CHONO ₂ CH ₂ ONO ₂	-405.9 [24]	-413.1	7.2	-397.4	-8.4
O ₂ N=N,CH ₂ CH ₂ ONO ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	-192.3 [24]	-233.4	41.1	-265.9	73.6
$O = V = CH_3 O = CH_3 O = V = CH_3 O = CH_3 O = V = CH_3 O = CH_3 O $	-305.3 [24]	-341.4	36.1	-209.3	-96.0
$0 \rightarrow \begin{array}{c} NO_2 \\ N-CH_2CH_2ONO_2 \\ N-CH_2CH_2ONO_2 \\ NO_2 \end{array}$	-561.7 [24]	-541.8	- 19.9	-409.1	- 152.6
, СН ₂ ОNO ₂ СН ₃ СН ₂ С, — СН ₂ ОNO ₂ СН ₂ ОNO ₂	-479.5 [24]	-486.5	7.0	-465.5	-14.0
$H_{2C} - N - NO_{2}$ $H_{2C} - N - NO_{2}$	-103.7 [24]	-113.4	9.6	4.0	-107.8
CH20NO2 CHONO2 CHONO2 CHONO2 CHONO2 CHONO2 CH20NO2	-675.5 [24]	-677.1	1.5	-663.1	-12.4
	22.1 [24]	-16.3	38.3	32.4	-10.3
CH ₂ ONO ₂ CH ₂ ONO ₂	-242.7 [24]	-276.2	33.5	-263.5	20.8
	-282.3 [24]	-243.6	-38.7	185.3	-467.5
$\begin{array}{c} CH_2ONO_2\\ HOCH_2C-CH_2ONO_2\\ CH_2ONO_2 \end{array}$	-560.4 [24]	-570.2	9.9	-611.0	50.7
-CH ₂ CH(ONO ₂)-] _n	-102.6 [24]	-136.9	34.3	-133.9	31.4
H ₃ C ^C HONO ₂	-229.3 [24]	-249.4	20.0	-231.7	2.3
$\begin{array}{c} CH_2ONO_2N_2CH_2ONO_2\\ HC & CH_2ONO_2HC & CH_2ONO_2\\ CH_2ONO_2HC & CH_2ONO_2\\ O & CH_2ONO_2 \end{array}$	-675.8 [24]	-705.1	29.3	-642.4	-33.3

И.Н. Keshavarz, H. Sadeghi	/ Journal of Hazardo	us Materials 171 (2	009) 140–146
----------------------------	----------------------	---------------------	--------------

Table 3 (Continued)

Energetic compound	Experiment	New meth	hod Dev	Previous	vork Dev
$\begin{array}{c} O_2 N, \begin{array}{c} H_2 \\ N-C \\ C \\ H_2 \\ NO_2 \end{array} \\ NO_2 \end{array}$	36.4 [24]	21.0	15.4	-44.9	81.3
	-41.8 [23]	-58.0	16.2	20.8	-62.6
02NOCH2CH2-N 02NOCH2CH2-N 02NOCH2CH2-N NO2	-536.0 [23]	-541.8	5.8	-409.1	126.8
O ₂ NNHCH ₂ CH ₂ NHNO ₂	-100.8 [23]	-113.4	12.6	4.0	-104.9
$O_2 N \xrightarrow{NO_2} O_2 N \xrightarrow{O_2} O_2 N \xrightarrow{O_2} O_2 N \xrightarrow{O_2} O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2 O_2$	-98.3 [23]	-152.4	54.1	-213.9	115.5
$O_2 NOCH_2 CH_2 - N CH_3$	-149.8 [23]	-123.3	-26.5	-255.0	105.2
$O_2 NOCH_2 \rightarrow ONO_2$ $O_2 NOCH_2 \rightarrow ONO_2$ $ONO_2 CH_2 ONO_2$ $ONO_2 ONO_2$ $ONO_2 ONO_2$ $ONO_2 ONO_2$	-1364.0 [23]	-1408.1	44.1	-1143.8	-220.2
$O_2 N \xrightarrow{NO_2} \begin{array}{c} NO_2 \\ \leftarrow C - N - C \\ NO_2 \end{array} \\ NO_2$	-28.0 [23]	-81.3	53.3	-164.1	136.0
$O_2 NOCH_2 \rightarrow H_2 NO_2 CH_2 ONO_2$	-374.0 [23]	-347.0	-27.0	-436.5	62.4
O_2N NO_2 O_2N NO_2 O_2N NO_2	200.0 [23]	205.1	-5.1	-108.9	308.9
rms deviation			28.4		142.7

- (1) Prediction of DE The existence of some specific polar functional groups can reduce the condensed heats of formation through increasing thermodynamic stability of energetic compounds.
 - (a) The existence of hydroxyl group: it was found that the ratio of the number of hydroxyl groups to the number of non-aromatic nitro or nitrate groups $(n_{OH}/n_{NO_2 \text{ or }ONO_2})$ is one of the important structural parameters. If $n_{OH}/n_{NO_2 \text{ or }ONO_2} \ge 1$, then $n_{DE} = n_{OH}/n_{NO_2 \text{ or }ONO_2} \times 0.5$ (e.g. for 2-hydroxymethyl-2-nitro-propane-1,3-diol, $n_{OH}/n_{NO_2 \text{ or }ONO_2} = 3$ and $n_{DE} = 1.5$). For $n_{OH}/n_{NO_2 \text{ or }ONO_2} < 1$, $n_{DE}=2.5$ (e.g. for 2,2,2-trinitro-ethanol, $n_{OH}/n_{NO_2 \text{ or }ONO_2} = 0.33$).
 - (b) The presence of carbonyl group: carbonyl group is another polar functional group which can increase thermodynamic

stability of energetic compounds. For those compounds that contain > C=O group, $n_{\text{DE}}=_{>C=O} \times 0.6$ (e.g. for 4,4,4-Trinitro-butyric acid 2,2,2-trinitro-ethyl ester, $n_{\text{DE}} = 0.6$).

- (c) The existence of cyclic and acyclic ether functional groups: for only six-membered cyclic ether, the value of DE can be considered in such that $n_{\text{DE}} = 0.25$. If there is ether functional group in the form ROCH₂CH₂OR', $n_{\text{DE}} = 0.5$ (e.g. 1-nitrooxy-2-[2-(2-nitrooxy-ethoxy)-ethoxy]-ethane). The value of n_{DE} is found to be 0.25 for the other forms of acyclic ethers (e.g. 1-nitrooxy-2-(2-nitrooxy-ethoxy)-ethane).
- (d) The existence of some specific molecular structures: For $|| $ NO_2 $$

the presence of molecular fragments $N \longrightarrow N$, $N \longrightarrow N$ and

-NH-NO₂, the values of n_{DE} are 1.0, 0.5 and 0.2, respec-

tively. For example, there are two N N N and one -NH-NO₂ molecular fragments in 1-nitro-3-guanidinourea for which $\sum n_{\text{DE}} = 2 + 0.2 = 2.2$.

(2) Prediction of IE

The effect of some functional groups in certain situations can decrease the theomodynamic stability of energetic compounds.

- (a) For acyclic and cyclic nitramines containing only one $C-N(NO_2)-C$ fragment, the value of n_{IE} is found to be 0.3 (e.g. N-ethyl-N-nitro-ethanamine).
- (b) The number of nitro groups attached to cubane is another structural parameter in this category for which $n_{\rm IE}$ = 0.2. As an example, $\sum n_{\rm IE} = 8 \times 0.2 = 1.6$ for octanitrocubane.
- (c) For hydrogen free nitroalkanes, the value of n_{IE} is equal to 1.0 (e.g. tetranitometane).

It should be noticed that the value of ΔH_{core} equals zero if the conditions to assign different values are not met. In order to compare the reliability of the present procedure with the guantum mechanical method, the predicted values of condensed phase heats of formation for some compounds are given in Table 1. The quantum mechanical data given in Table 1 have been taken from the work of Rice et al. [7] and Rice and Hare [8]. The predicted results of previous work are also included in Table 1 which confirms reliability of the present method with respect to a previously reported work [9]. As shown in Table 1, the rms deviation of this new method is lower than that of the other methods. Some further energetic compounds are also given in Table 2 and the predicted results are compared to the previous work [9]. As indicated in Table 2, the reliability of the present method is higher than that of previous work [9]. Since there are different values for the condensed phase heats of formation reported from different sources in Tables 1 and 2, the latest reported values of the NIST Chemistry Web Book [23] were taken to compare the above mentioned method with the experimental data, e.g. 61.5, 66.5 and 79.1 kJ/mol are several different reported experimental data for hexahydro-1,3,5-trinitrotriazine [23]. To examine the application of the present new method for the well-known explosives, the calculated values for some energetic compounds with complex molecular structures are also given in Table 3. However, as before, the rms deviation of this method is less than that of the previous work [9].

It should be noted that the present method can be applied only to selected classes of energetic compounds including acyclic and cyclic nitramines, nitrate esters and nitroaliphatics. Deviations of predicted results from experimental data may be large for the other classes of energetic compounds.

4. Conclusions

A new simple method has been introduced which uses only molecular structure information to predict the condensed phase heats of formation in acyclic and cyclic nitramines, nitrate esters and nitroaliphatic energetic compounds. In this method, correcting heat of formation with two variables n_{DE} and n_{IE} can correct the predicted values on the basis of ΔH_{core} . Eq. (1) can be used easily without any need to use computer codes or experimental data. As indicated in Tables 1–3, this new method provides reliable results with respect to quantum mechanical method [7,8] and previously reported work [9].

Acknowledgement

We would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

References

- A.K. Sikder, G. Maddala, J.P. Agrawal, H. Singh, Important aspects of behaviour of organic energetic compounds: a review, J. Hazard. Mater. A 84 (2001) 1–26.
- [2] M.H. Keshavarz, A simple theoretical prediction of detonation velocities of nonideal explosives only from elemental composition, in: P.B. Warey (Ed.), New Research on Hazardous Materials, Nova Science Publishers Inc., 2007 (Chapter 9).
- [3] LE. Fried, W.M. Howard, P.C. Souers, CHEETAH 2.0 User's Manual, Lawrence Livermore National Laboratory, Livermore, CA, 1998.
- [4] G. Sanford, B.J. McBride, Computer program for calculation of complex chemical equilibrium compositions and applications I. Analysis, vol. 1331, NASA Reference Publication, 1994, pp. 1–41.
- [5] L.E. Fried, M.R. Manaa, P.F. Pagoria, R.L. Simpson, Design and synthesis of energetic materials, Annu. Rev. Mater. Res. 31 (2001) 291–321.
- [6] E.F.C. Byrd, B.M. Rice, A comparison of methods to predict solid phase heats of formation of molecular energetic salts, J. Phys. Chem. A 113 (2009) 345–352.
- [7] B.M. Rice, S.V. Pai, J. Hare, Predicting heats of formation of energetic materials using quantum mechanical calculations, Combust. Flame 118 (1999) 445–458.
- [8] B.M. Rice, J. Hare, Predicting heats of detonation using quantum mechanical calculations, Thermochim. Acta 384 (2002) 377–391.
- [9] M.H. Keshavarz, Theoretical prediction of condensed phase heat of formation of nitramines, nitrate esters, nitroaliphatics and related energetic compounds, J. Hazard. Mater. A 136 (2006) 145–150.
- [10] A. Yoshiaki, S. Tahara, M. Tamura, T. Yoshida, Calculations of heats of formation for nitro compounds by semi-empirical mo methods and molecular mechanics, J. Energ. Mater. 9 (1991) 161–171.
- [11] P. Politzer, J.S. Murray, T. Brinck, P. Lane, Immunoanalysis of agrochemicals, in: J.O. Nelson, A.E. Karu, R.B. Wong (Eds.), ACS Sym. Ser. 586, American Chemical Society, Washington, DC, 1994 (Chapter 8).
- [12] J.S. Murray, P. Politzer, in: P. Politzer, J.S. Murray (Eds.), Quantitative Treatment of Solute/Solvent Interactions, Theoretical and Computational Chemistry, vol. 1, Elsevier, Amsterdam, 1994, pp. 243–289.
- [13] P. Politzer, J.S. Murray, Relationships between lattice energies and surface electrostatic potentials and areas of anions, J. Phys. Chem. A 102 (1998) 1018–1020.
- [14] W.J. Hehre, L. Rdom, P.V.R. Schleyer, J.A. Pople, Ab Initio Molecular Orbital Theory, 271, Wiley, New York, 1986, 298.
- [15] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993) 5648–5652.
- [16] C. Lee, W. Yang, R.C. Parr, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37 (1998) 785–789.
- [17] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, fourth ed., McGraw-Hill, New York, 1987, pp. 154–190.
- [18] S. Bourasseau, A systematic procedure for estimating the standard heats of formation in the condensed state of non aromatic polynitro-compounds, J. Energ. Mater. 8 (1990) 416–441.
- [19] M.H. Keshavarz, M. Oftadeh, New estimated method for heat of formation of CHNO explsives in solid state, High Temp.-High Press. 35/36 (2003/2006) 499-504.
- [20] M.J. Kamlet, S.J. Jacobs, Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives, J. Chem. Phys. 48 (1968) 23–35.
- [21] M.H. Keshavarz, A simple procedure for calculating condensed phase heat of formation of nitroaromatic energetic materials, J. Hazard. Mat. A 136 (2006) 425–431.
- [22] W.J. Palm III, Matlab for Engineering Applications, WBC/McGraw-Hill, 1999, p. 339 and p. 227.
- [23] NIST Standard Reference Data Base Number 69, which can be accessed electronically through the NIST Chemistry Web Book (http://webbook. nist.gov/chemistry/); references for individual molecules are given therein.
- [24] R. Meyer, J. Köhler, A. Homburg, Explosives, sixth ed., Wiley-VCH, 2007.